Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The imbalance of matter and antimatter in our Universe provides compelling motivation to search for undiscovered particles that violate charge-parity symmetry. Interactions with vacuum fluctuations of the fields associated with these new particles will induce an electric dipole moment of the electron (eEDM). We present the most precise measurement yet of the eEDM using electrons confined inside molecular ions, subjected to a huge intramolecular electric field, and evolving coherently for up to 3 seconds. Our result is consistent with zero and improves on the previous best upper bound by a factor of ~2.4. Our results provide constraints on broad classes of new physics above electron volts, beyond the direct reach of the current particle colliders or those likely to be available in the coming decades.more » « less
-
Abstract Ultralight bosons such as axion-like particles are viable candidates for dark matter. They can form stable, macroscopic field configurations in the form of topological defects that could concentrate the dark matter density into many distinct, compact spatial regions that are small compared with the Galaxy but much larger than the Earth. Here we report the results of the search for transient signals from the domain walls of axion-like particles by using the global network of optical magnetometers for exotic (GNOME) physics searches. We search the data, consisting of correlated measurements from optical atomic magnetometers located in laboratories all over the world, for patterns of signals propagating through the network consistent with domain walls. The analysis of these data from a continuous month-long operation of GNOME finds no statistically significant signals, thus placing experimental constraints on such dark matter scenarios.more » « less
-
Abstract Numerous observations suggest that there exist undiscovered beyond‐the‐standard‐model particles and fields. Because of their unknown nature, these exotic particles and fields could interact with standard model particles in many different ways and assume a variety of possible configurations. Here, an overview of the global network of optical magnetometers for exotic physics searches (GNOME), the ongoing experimental program designed to test a wide range of exotic physics scenarios, is presented. The GNOME experiment utilizes a worldwide network of shielded atomic magnetometers (and, more recently, comagnetometers) to search for spatially and temporally correlated signals due to torques on atomic spins from exotic fields of astrophysical origin. The temporal characteristics of a variety of possible signals currently under investigation such as those from topological defect dark matter (axion‐like particle domain walls), axion‐like particle stars, solitons of complex‐valued scalar fields (Q‐balls), stochastic fluctuations of bosonic dark matter fields, a solar axion‐like particle halo, and bursts of ultralight bosonic fields produced by cataclysmic astrophysical events such as binary black hole mergers are surveyed.more » « less
An official website of the United States government
